RESEARCH REPORT

SEMI-AUTONOMOUS STEERING WHEEL

STATEMENT OF AUTHENTICITY

This is to certify that to the best of my knowledge, the content of this report is my own work. This report has not been submitted for any subject or for other purposes. I certify that the intellectual content of this report is the product of my own work and that all the assistance received in preparing this report and sources have been acknowledged.

Brooklyn Gossling N11250241 5/9/25

STATEMENT OF USE OF AI

I have utilised Generative AI in this report (Chat GPT, and MS Co-pilot) to assist in various ways. The way I have used AI includes, extracting quotes from transcriptions, and condensing long text to meet word counts and improve clarity.

Brooklyn Gossling N11250241 5/9/25

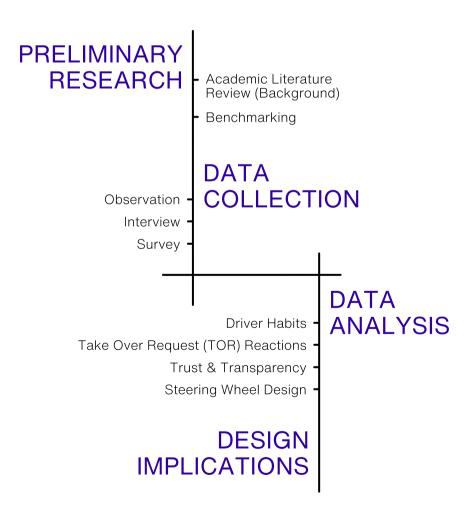
EXECUTIVE SUMMARY

This report investigates the human-machine interaction challenges of Level 3 semiautonomous driving, with a focus on the steering wheel for the BMW M8. As vehicles move toward greater automation, one of the most critical issues is how drivers disengage during autonomous mode and safely transition back to manual control when prompted by a takeover request (TOR).

A mixed-method research approach was adopted to examine these challenges. Background literature established the broader context of SAE automation levels, TOR performance, trust calibration, and transparency in automated vehicles. Benchmarking compared leading global systems such as those by Mercedes-Benz, BMW, Honda, Tesla, GM, Ford, Lexus, and emerging Chinese manufacturers. First-hand research triangulated three methods: observations of participants in a BMW M8 show car, a semi-structured interview with a human-machine interface researcher, and a survey distributed to a wider audience.

Analysis identified four themes to consider when designing this steering wheel: driver habits, TOR reactions, trust and transparency, and steering wheel form. Research showed participants tended to engage in light secondary tasks, expressed strong preferences for gradual and multimodal TOR alerts, valued clear system transparency, and showed cautious attitudes toward radical wheel redesigns. These findings informed the design implications section, which highlights opportunities for future design intervention.

TABLE OF CONTENTS


Introduction			
Background			
Benchmarking			
Broad Market	6		
Current Market Analysis	7		
Emerging Trends	8		
Research	9		
Methodology	9		
Method 1: Observations	9		
Method 2: Interview	10		
Method 3: Survey	10		
Analysis and Findings			
Observation Findings	11		
Semi-Structured Interview Findings	13		
Survey Findings	14		
Discussion	16		
Design Implications	17		
Conclusion			
References			
Appendix			

INTRODUCTION

As the automotive industry moves toward fully autonomous driving, it faces significant challenges in the transition phase. Modern vehicles are now capable of taking over most driving tasks, allowing drivers to disengage, but they still require the driver to be ready to retake control at short notice. This creates a complex human-machine interaction problem, where safety and user experience depend on how smoothly the driver can shift from "eyes-off driving" back to full attentiveness.

Designing for this gap is essential to enhancing both driver safety and overall user experience. A key opportunity lies in the human-machine interface (HMI), where steering wheel design can build trust in automation, provide predictive cues about system behaviour, and support safer, less stressful takeover requests.

The aim of this project is to investigate emerging technologies, current trends in semi-autonomous driving, and insights from both literature and first-hand research to develop an innovative steering wheel that addresses the challenges of handover, enhances user experience, supports smoother takeover transitions, and preserves the aesthetic identity of the BMW M8. To achieve this, the report draws on a mixed-method approach, including a review of existing literature, user observations, an interview with a professional, and a survey to identify opportunities for innovation in steering wheel design during the semi-autonomous era.

BACKGROUND

The global automotive industry is rapidly advancing toward automation, motivated by the promise of improved safety, efficiency, and accessibility. According to the World Health Organization, approximately 1.19 million people die in road crashes each year, with human error accounting for the majority of causes (World Health Organisation, 2023). Automated driving technology offers a potential reduction in these numbers by reducing reliance on human recognition, decision-making, and reaction time. Beyond safety, automation also promises benefits such as increased comfort, the ability to reclaim travel time for other activities, and greater mobility access for those unable to drive.

To track this progress, the Society of Automotive Engineers (SAE) defines six levels of automation from 0 to 5, ranging from no automation to full self-driving capability (SAE International. Levels 0 to 2 provide varying degrees of driver assistance, while Levels 3 to 5 allow drivers to disengage under certain conditions, with Level 3 requiring drivers to be ready to take over. Today, manufacturers such as Mercedes-Benz, BMW. and Honda have introduced certified Level 3 systems in limited markets, while Level 4 is limited to ridehailing fleets like Waymo (Mercedes-Benz Media, 2022) (BMW Group, 2023).

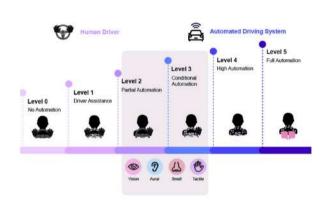


Figure 1 - SAE Levels

(Zhou & Jiang, 2024)

The current industry focus is on Level 3, which presents unique human-machine interaction challenges. Research shows that takeover requests (TORs) are a critical point of failure. Drivers engaged in non-driving tasks often require several seconds to reorient, with performance shaped by posture, gaze, and situational awareness (Deo & Trivedi, 2020). Studies indicate that delayed or poor-quality takeovers can lead to unsafe lane changes, harsher braking, or even collisions. For example, one study (Kim, et al., 2023) found that drivers responded fastest when they perceived high risk but often performed worst in medium-risk situations due to misjudging urgency. Researchers emphasise that TOR design must consider both timing and modality, with multimodal alerts such as visual, audio, and haptic cues increasing comprehension and reducing panic (Riener, Jeon, & Alvarez, 2022). At the same time, system transparency that communicates what the vehicle is doing and why plays a vital role in building appropriate trust. Over trust may encourage complacency, while under trust can discourage use altogether. The HMI must therefore carefully calibrate user expectations (Riener, Jeon, & Alvarez, 2022).

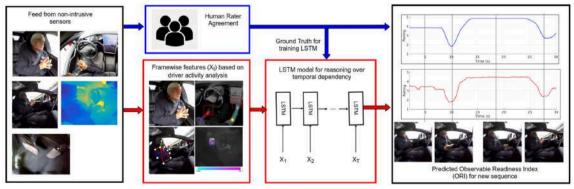


Figure 2 - Study on Driver Readiness, an Overview of the Approach

(Deo & Trivedi, 2020)

Passenger comfort further complicates adoption. In semi-autonomous modes, drivers often act more like passengers, engaging in secondary tasks such as reading, phone use, or conversation. This shift increases the likelihood of motion sickness due to sensory conflict, especially when the vehicle makes sudden or unpredictable manoeuvres (Diels & Jelte, 2019). Literature also shows that in-vehicle interaction design plays a significant role in both safety and comfort. An In-Vehicle Interaction toolkit was developed, demonstrating how modalities such as steering wheel haptics, HUDs, alarms, and ambient lighting can be combined to balance reliable takeover cues with enjoyable user experiences in semi-autonomous driving (Zhou & Jiang, 2024). This interactive toolkit will be used to review existing vehicles in the benchmarking section of this report. For performance vehicles like the BMW M8, the challenge is balancing the excitement of sporty driving with the comfort and predictability required for longer autonomous journeys.

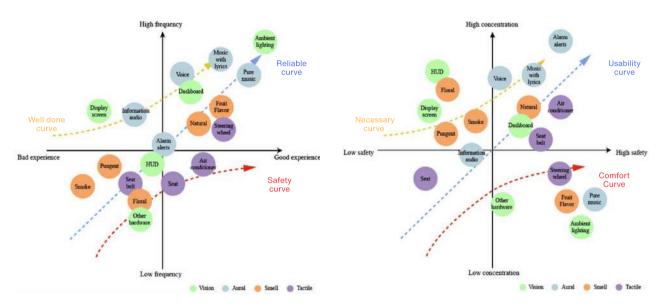


Figure 3 - Reliable Interactive Toolkit (Left) & Usability Interactive Toolkit (Right)

(Zhou & Jiang, 2024)

In summary, the literature underscores that while automation promises clear safety and lifestyle benefits, the semi-autonomous era introduces critical challenges in takeover readiness, trust, and comfort. These insights directly shape the scope of this project, which focuses on designing a steering wheel that improves user experience, enhances takeover safety, and maintains the BMW M8's brand identity.

BENCHMARKING

Level 3 (L3) automation allows the car to take over the dynamic driving task so the driver can look away from the road and remove their hands from the wheel, while still remaining ready to respond to a takeover request. This grey zone of shared control is considered risky by many brands, due to legal liability and the difficulty of regaining situational awareness in time. As a result, most manufacturers are either enhancing Level 2 systems, that are often marketed as "2+" (not officially recognised by SAE) or aiming directly for Level 4, leaving only a few pursuing certified L3 systems (Mobileye, 2020).

BROAD MARKET

It is therefore necessary to map out the industry to understand how different manufacturers are approaching automation.

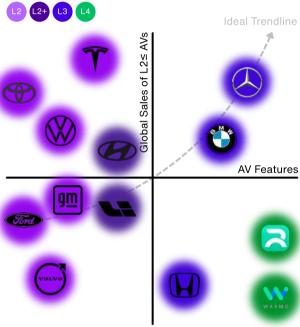


Figure 3 - Car Manufacturer AV Positioning Graph

Figure 3 demonstrates that BMW is in a good position with their Personal Pilot system, however the opportunity here is to surpass Mercedes-Benz in terms of AV adoption and AV distribution.

Currently only three automakers offer certified L3. Mercedes-Benz Drive Pilot is the frontrunner, approved in Germany and parts of the U.S, though still restricted to certain roads and speeds (Mercedes-Benz USA, 2023). BMW Personal Pilot L3, launched on the 7 Series in Germany, provides comparable functionality while building on BMW's L2 Highway Assistant architecture (BMW Group, 2024).

Honda Sensing Elite, deployed only in Japan on a small run of Legend sedans, demonstrates feasibility but remains the most limited of the three (Honda, 2024) (Honda, 2021).

The bulk of the market lies at Level 2 and 2+. Tesla dominates by scale, with over vehicles equipped million Autopilot/FSD, though SAE continue to classify it as L2 (Tesla, 2025). Other strong players include GM's Super Cruise and Ford's BlueCruise, both offering hands-free highway driving on mapped roads, alongside Hyundai/Kia's HDA2, ProPILOŤ Nissan's Assist. (General Tovota/Lexus **Teammate** Motors, 2025) (Ford, 2023) (Lexus. 2022). In Europe, Audi, and VW continue to expand their L2 AV systems.

In China, brands such as NIO, XPENG, Li Auto, and many others are rapidly rolling out advanced L2+ packages that mimic L3. Though not formally certified, their rapid adoption makes them critical in global benchmarking. At the frontier, Waymo (USA), and Baidu Apollo Go (China), operate Level 4 robotaxi fleets in selected cities. While small in scale compared with L2 uptake, they illustrate the split between consumer-supervised automation (L2/L3) and fully driverless fleet services (L4).

Consumer adoption remains concentrated around Level 2 and 2+, with only a handful of L3 deployments. BMW is well placed with its early rollout but trails Mercedes in regulatory and market positioning, leaving scope to close the gap through innovation in user experience and HMI

CURRENT MARKET ANALYSIS OF WHEEL, TOR, & HMI

To design an L3 steering wheel for the BMW M8, it is necessary to examine how leading manufacturers approach steering-wheel interaction, takeover requests (TORs), and HMI. A decision-matrix table was created using five weighted criteria: visual, auditory, tactile, HUD/predictive cues, and comfort features. These features are based on the IVI toolkit (Zhou & Jiang, 2024), which links multimodal alerts to safe and comfortable automated driving. Find the weighted matrix to determine the positioning graph in the appendix (Appendix A).

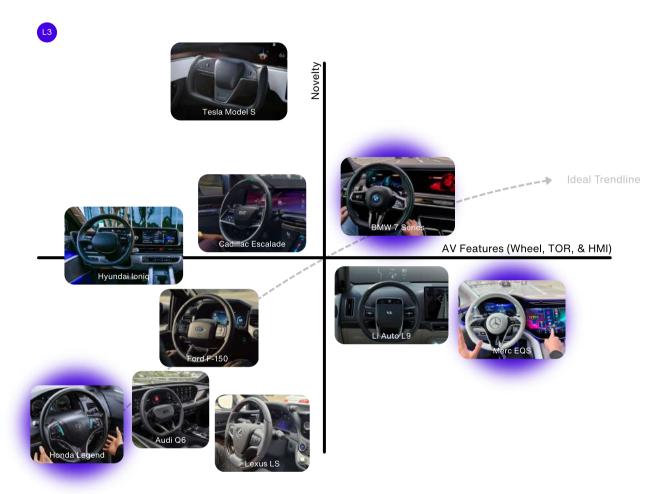


Figure 4 - Current Steering-Wheel, Take Over Request (TOR) and Human Machine Interface (HMI) Positioning Graph

Results show that Mercedes-Benz, and BMW lead through strong multimodal integration, combining predictive HUDs with wheel haptics, capacitive sensors, and clear audio-visual cues. Li Auto scored almost as highly, showing how China's L2+ systems are approaching L3 sophistication. Lexus, GM, Ford, and Hyundai form a middle tier, while Audi lags slightly due to limited haptic features. The Honda Legend demonstrates that certification does not guarantee advanced HMI, while Tesla ranks low, relying heavily on screen visuals and torque sensing without haptics or HUD support.

When these results are compared with steering-wheel novelty, most current models retain a traditional round wheel with incremental innovations such as rim lighting, grip sensors, and vibration. This makes L2 and L3 automation appear more like an added feature than a radical design shift. Unconventional wheels, such as Tesla's yoke, remain confined to L2/L2+ systems, while retractable wheels, like Audi's Al:ME, are still conceptual.

Overall, the current market shows a cautious trajectory. Certified L3 leaders have prioritised multimodal TOR effectiveness over wheel redesign, while more radical wheel concepts are confined to supervised systems. There is opportunity to explore novel ways to integrate L3 automation.

EMERGING TRENDS

Future design must also consider emerging trends. Artificial intelligence is increasingly integrated into vehicles to personalise experiences and predict driver needs, for example Honda's Saloon was built around AI with the goal of humanising the autonomous driving experience (Honda, 2025). Many manufacturers are already experimenting with AI to enhance driver assistance and user experience, but these systems are still in their infancy such as the recent Mercedes-Benz and Nvidia partnership (Mercedes-Benz Group, 2020).

Steering wheels are also sites of experimentation, with some brands testing yokes or retractable designs like the Audi Al:ME. Tesla's yoke illustrates both the appeal and limitations of radical change; while visually striking, consumer feedback often frames the yoke as "a band aid with added cost and complexity simply to solve a problem no one has had before." suggesting familiarity remains central to trust (Seabaugh, 2021).

Other than typical futuristic concepts like Honda's Saloon, another notable direction is retromodern design language, such as Hyundai's N Vision 74, which fuses 1970s rally aesthetics with emerging hydrogen-electric technology (Hyundai, 2025). This concept car has received overwhelmingly positive feedback from the automotive community. This shows that future trends are not always limited to minimal futuristic designs.

To visualise these trends, the following matrix positions established manufacturer concept vehicles by their use of abstract technology and steering-wheel novelty.

Figure 5 - Established Car Manufacturer Release Concept Steering Wheel Positioning Graph

Concept analysis suggests the industry is moving toward unconventional forms paired with high-tech interiors. Whether this aligns with user preference is less certain. Observational research in the BMW M8 display car will provide insight into how users balance conventionality, which supports comfort and trust, with advanced technology, to improve UX, safety and effective TORs.

RESEARCH

This section outlines the research methodology, and methods used to investigate user interactions, behaviours, and preferences in semi-autonomous vehicles. A qualitative approach was adopted to explore habits, feelings towards TORs, levels of trust and transparency, and attitudes towards unconventional steering wheel design. To ensure rigour and depth, a triangulated research strategy was employed, combining observations, expert interviews, and quantitative surveys.

METHODOLOGY

A qualitative methodology was chosen as the primary framework, as it enables the exploration of nuanced human experiences, perceptions, and behaviours in real-world contexts. Given that Level 3 semi-autonomous vehicles (L3 AVs) are still emerging in the market, it was important to capture subjective user perspectives to inform design directions. Triangulation was applied by using three complementary research methods: observational studies, semi-structured expert interviews, and quantitative surveys. This multi-method approach provided richer insights and reduced the limitations of any single data source.

METHOD 1: OBSERVATIONS

The first method consisted of ten participant observations conducted in pairs using a 2019 BMW M8 (see Figure 6), displayed at the BMW Design Academy at QUT. The goal was to gain a first-hand view of how users might behave in an autonomous context, while probing their thoughts on TORs and unconventional steering wheel forms.

Figure 6 - BMW M8 Used For Observations

Participants were asked to simulate a typical commute under an L3 system, with scenarios that allowed them to disengage (hands and eyes off) while remaining ready to retake control within 10 seconds. Observations lasted 20 minutes, with participants alternating between the driver and passenger seat. For the first five minutes. behaviours were observed without intervention, followed by semistructured questioning to encourage discussion and reflection (see appendix C for the observation question sheet).

Conducting the observations in pairs fostered comfort and natural conversation, making the sessions more akin to an enactment-based focus group.

Sessions were video recorded using an iPhone on a tripod in the rear seat (see Figure 2), capturing both dialogue and non-verbal behaviours (see Figure 3). Recordings were later transcribed and coded around four themes: driver habits. TOR reactions. vehicle trust transparency. and steering form/ergonomics. These themes were identified during analysis and became central to later stages of the research.

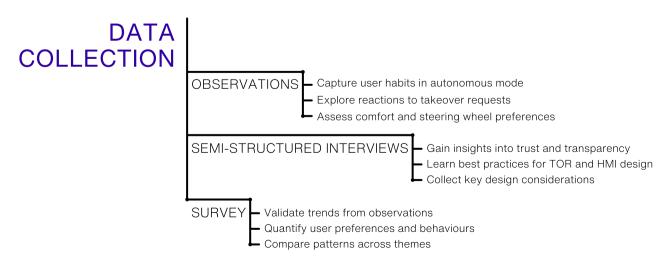
Figure 7 - Tripod Setup

Figure 8 - Camera Angle

The sample consisted of eight males and two females, all in their early twenties. While this offered valuable insights into a younger demographic, it also introduced limitations, particularly around generalisability. None of the participants had significant experience with AVs, although all were open to experimenting with the scenario.

METHOD 2: SEMI-STRUCTURED INTERVIEW

To complement user-focused insights, a semi-structured interview was conducted with a PhD researcher specialising in Human-Machine Interfaces (HMI) for automated vehicles. His research focuses on the design of multimodal HMIs that optimise safety and user experience, with practical experience evaluating interfaces in simulators, on test tracks, and in real-world urban trials. He has also led human-centred, multimodal data collection studies with AVs.


The interview, conducted via Zoom, was recorded and transcribed for analysis. The conversation provided valuable context on key design considerations, such as the role of trust calibration, the balance between over-trust and under-trust, and the importance of attention levels in L3 AVs. While his research was not steering wheel specific, his insights into user behaviours, transparency, and effective takeover support directly informed the direction of this project. See the list of questions in appendix D.

METHOD 3: SURVEY

The third method was a quantitative survey, designed to validate and expand themes emerging from observations and interview. The survey asked multiple-choice questions across the four coded themes: driver habits. TOR preferences. trust/transparency, steering wheel form. Questions were designed to capture both preferences and behavioural likelihoods (e.g., participants would use their phone, nap, or talk during autonomous mode; how they would prefer TOR alerts to be their delivered; and openness unconventional steering wheel shapes).

The survey was created on Qualtrics and distributed through three channels: a research survey Facebook group, the QUT ID7 cohort chat, and my personal Instagram, with a total of 37 responses. Two of these channels may introduced some bias, therefore efforts were made to mitigate this through neutral question wording and broad response options. The survey provided quantitative reinforcement of the observational themes, offering a clearer picture of generalisable trends. See the list of survey questions in appendix B.

In summary, this study adopted a triangulated qualitative approach, supported by quantitative validation, to explore human factors in semi-autonomous driving. Observations provided rich behavioural insights, the expert interview contextualised findings within industry and academic knowledge, and the survey quantified key trends. Together, these methods generated a holistic understanding of how users perceive and interact with L3 AV systems, with implications for steering wheel design, HMI integration, and takeover request strategies.

ANALYSIS AND FINDINGS

This section presents the analysis and results of the three first-hand research methods: observations, a semi-structured interview, and a survey. Each method generated complementary forms of data, which were examined individually and then compared to identify patterns in user behaviour, takeover response, trust in automation, and steering wheel form preferences.

OBSERVATION FINDINGS

The observation data was qualitative and therefore required coding for effective analysis. Video recordings were transcribed and systematically coded to identify recurring patterns. From the discussions, four key themes emerged: driver habits, takeover request (TOR) reactions, trust and transparency, and steering wheel form, which were applied consistently across all ten observations. Find observation transcripts in appendix F.

Table 1 - Observation Coding

Theme	Code	Transcript Examples
	Phone & media consumption	"I'd probably pull my phone out and scroll Instagram." "I'd watch Netflix if the system was in control for a while." "Phone's easier than a laptop because you can still keep half an eye on the road." "I'd put on a podcast or music."
	Conversation & socialising	l'd probably just talk to the passenger next to me." "If I trusted the system more, l'd look at the person instead of the road." "On long trips, l'd rather chat than sit on my phone the whole time."
Driver Habits	Napping reluctance	"I wouldn't nap, I don't think I'd ever feel safe enough." "Maybe on a really long highway trip, but only if I trusted someone else in the car to watch." "If I was alone, I couldn't switch off to sleep."
	Attention to the road	"I'd still keep one eye on the road, even if I wasn't driving." "Even with autonomous mode on, I don't think I could look away completely." "I'd glance up every now and then just to check what it's doing." "I'd feel safer if I was still watching, especially in traffic." "Queensland drivers are unpredictable, so I'd keep watching regardless."
	Stress & panic under sudden alerts	"If it just yelled TAKEOVER, I'd panic and grab the wheel." "A loud alarm would stress me out more than help."
Takeover Request (TOR) Reactions	Preference for gradual escalation	"I'd want a countdown, like 10, 9, 8, so I know how long I have." "Build-up warnings make it easier to focus before I take control."
,	Modality diversity	"Seat vibration would wake me up if I was drifting." "A light strip on the wheel would get my attention without scaring me." "Sound is the clearest, but it can't be too aggressive."
	Skepticism & caution	"I'd still be watching the road, even in autonomous mode." "I don't think I could ever fully trust it."
Driver Trust & Transparency	Desire for system communication	"If it's changing lanes, I want to know before it does it." "A HUD showing where the car's going would make me feel safer."
	Conditional trust	"I'd use it more on highways where I know the road well." "I might trust it after a while, but not straight away."
	Wheel position in autonomous mode	"I'd want it to move slightly forward to give me more leg room." "Keep it close enough so I can grab it quickly." "Pushing it away would help with a laptop, but not too far."
Steering Wheel Form	Traditional shape preference	"Round wheels are more natural, I'd stick with that." "Flat-bottom would be fine, more leg space." "Yokes look cool but don't feel practical."
	Role of wheel in takeover	"The wheel moving back down could signal it's time to take over." "If it turns by itself, I'd want to see that feedback, not have it stay still."

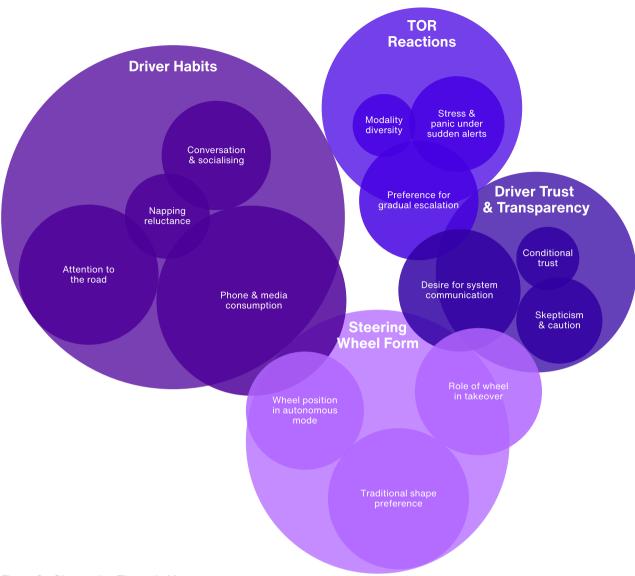


Figure 9 - Observation Thematic Map

Figure 9 illustrates the coded findings from the ten observations, grouping them into four key themes. The size of each circle reflects the frequency and emphasis given by participants, while overlaps indicate how different codes complement each other. For example, the desire for system communication closely links with preference for gradual escalation and the role of the wheel in takeover, highlighting how expectations for trust, TOR delivery, and steering wheel form are interdependent.

Driver behaviour during autonomous mode was dominated by phone and media consumption, which almost every participant identified as their default activity. Attention to the road also scored highly, as many reported they would still glance at traffic and surroundings even when disengaged, signalling a residual caution and reluctance to give up control. Conversation and socialising were common in paired settings, while napping reluctance was nearly universal, with participants rejecting sleep due to trust concerns. Together, these findings reveal that users balance engagement with distraction, favouring activities that can be paused quickly in case of a takeover request.

Participants consistently described stress when imagining sudden, loud alerts, with many stating that abrupt warnings could induce panic or unsafe reactions. Instead, there was a strong preference for gradual escalation, where cues begin subtly and intensify only if ignored. Modality diversity also emerged, with participants favouring multimodal alerts (sound, lights, haptics) to ensure redundancy without overwhelming the driver. These findings indicate that TOR design must carefully balance urgency with clarity, offering progressive and multimodal communication to re-engage the driver effectively.

Trust in automation was conditional, with participants expressing scepticism and caution about fully disengaging, particularly in suburban or unpredictable traffic conditions. At the same time, there was a strong desire for system communication: participants wanted clear feedback on upcoming manoeuvres such as lane changes, braking, or slowing for hazards. This shows that transparency is not only a safety factor but also a comfort mechanism, shaping how much drivers are willing to disengage and what activities they feel safe doing in autonomous mode.

Across participants, there was a strong preference for traditional shapes, with many rejecting unconventional forms such as rectangular or yoke-style wheels. However, wheel position in autonomous mode divided opinions: some participants wanted the wheel to retract slightly for comfort, while others preferred it to stay within easy reach for reassurance. The role of the wheel in takeover was widely acknowledged as critical, with many suggesting that its positioning could act as a cue for regaining control. These findings suggest that while radical redesigns may face resistance, subtle adjustments that balance comfort and accessibility could improve the semi-autonomous driving experience.

To strengthen and validate these qualitative insights, I will be conducting a survey to quantitatively verify the findings and test their broader relevance.

SEMI-STRUCTURED INTERVIEW FINDINGS

The semi-structured interview with Yueteng, a PhD candidate at CARRS-Q, QUT, provided valuable insights into the challenges of human-machine interaction in SAE Level 3 automation. His research focuses on multimodal human-machine interfaces (HMIs) that enhance safety and user experience. Find the interview transcript in appendix G.

One of the key points raised was the difference in driver attention between regular and automated driving, illustrated in Figure 10. In conventional driving, the driver's attention demand remains consistently high, whereas in automated driving attention drops significantly during non-driving activities and must rapidly spike during a takeover request. This steep increase creates a vulnerability, as drivers are often unprepared to regain situational awareness within the short timeframe required.

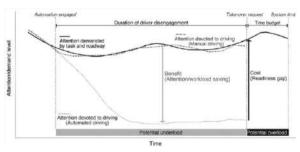


Figure 10 - Demand level between regular driving and semi-autonomous driving

The interview also highlighted that takeover requests (TORs) should be understood as a process rather than a single moment. This process involves multiple phases: pre-transition (when the driver is engaged in secondary tasks), request-to-intervene, physical takeover, and stabilisation of the vehicle. Supporting the driver across these phases is crucial to reducing risk and improving handover quality.

Another recurring theme was the problem of trust. Over-trust can lead to unsafe disengagement, such as attempting to nap or ignoring road conditions, while under-trust discourages drivers from using the system at all. Achieving the right balance requires communication that is clear, consistent, and context sensitive.

Finally, Yueteng emphasised that steering wheel design should not only accommodate handover but also serve as a medium for delivering multimodal cues such as haptics, lights, and audio. These cues become especially effective when they align with the driver's mental model of how the system operates.

Takeover is a multi-phase process involving pre-transition, intervention, takeover, and stabilisation. Each phase requires clear system support, highlighting that TORs are not a single event but a managed sequence.

Attention drops dramatically in automated mode and must be actively managed to prevent unsafe spikes in workload. Smooth transitions and pre-emptive cues are vital to re-engage the driver effectively.

Both over-trust and under-trust present risks. Over-trust can lead to complacency and misuse, while under-trust discourages engagement with the system. HMl design must therefore carefully balance communication to calibrate trust appropriately.

TOR effectiveness depends on timing, modality, and clarity. Escalation should be gradual yet decisive, with multimodal cues reinforcing urgency without inducing panic.

SURVEY FINDINGS

Building on the insights from the observations and interview, a survey was developed to quantify key themes. The survey had 37 participants and focused on driver habits, takeover request preferences, trust and transparency, and steering wheel form, allowing trends identified in the qualitative research to be measured more broadly. Figure 11 shows the age dispersion of survey participants. See appendix E for raw survey data.

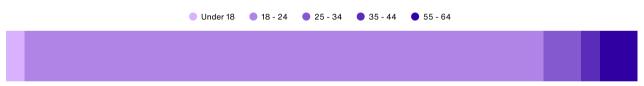


Figure 11 - Survey participant age dispersion

For driver habits, participants indicated they would most often use autonomous mode in long highway trips and stop-andgo traffic, with engagement in low-effort secondary tasks such as phone use, listening to music, or talking passengers being most common. This aligns with literature suggesting drivers favour familiar and low-risk activities disengagement. This is backed up by figure 12, demonstrating that the top 4 activities done by passengers would be limited distraction tasks. This also confirms observations such as many drivers would use their phone, neglect napping and using a laptop.

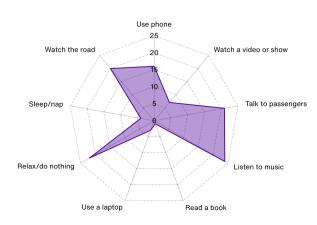


Figure 12 - User habit in autonomous mode radar chart

When asked how they preferred to be alerted for a non-urgent TOR, over half (51%) preferred a multimodal combination of sound, visual, and haptic cues. Sound alone (14%) or visual alone (11%) were much less popular, reflecting the need for redundancy in alerts.

For delivery style, 54% favoured a gradual escalation (gentle cues that intensify if ignored), while 26% preferred sudden alerts and 20% wanted dynamic severity-based alerts. This indicates that participants value clarity but dislike being startled, aligning with literature and observation trends advocating smooth, predictable transitions.

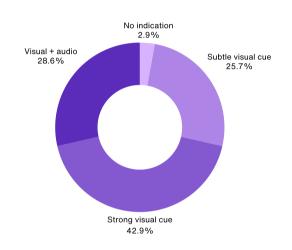


Figure 14 - Preferred level of AV transparency

When asked about wheel positioning in autonomous mode, the overwhelming majority (71%) preferred it to stay in the normal driving position, while 26% supported a slight adjustment out of the way. Very few wanted a fully retractable wheel (3%).

On wheel form, most respondents were cautious: 46% were neutral, while only 20% willing were to accept unconventional forms such as a Teslastyle yoke. This suggests that while participants are open to minor ergonomic improvements, strong attachment to traditional steering wheel forms persists. This trend follows the findings within the observations.

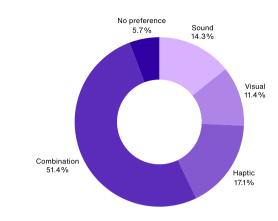


Figure 13 - Preferred alert method in a TOR

For the third theme; driver trust and transparency, participants expressed strong interest in knowing the vehicle's intended actions. 43% wanted a clear display of upcoming manoeuvres, and 29% preferred combined visual and audio cues, with only 3% preferring no indication (figure 14).

When asked directly about importance of understanding the AV's intended actions, 49% rated it "very important" and 17% "extremely important." These findings reinforce the high value drivers place on transparency, as seen mentioned in earlier observations and in the interview.

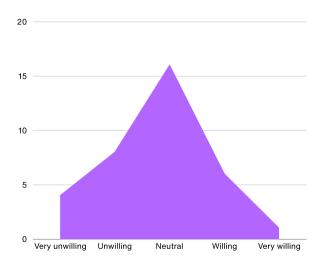


Figure 14 - Willingness to take on a non-traditional wheel

DISCUSSION

The findings from this research support what was outlined in the background research while also adding new knowledge about user habits and preferences for semi-autonomous driving. The literature focussed heavily on best practices for takeover requests (TORs), trust calibration, and system transparency, while the first-hand research provided insight into what people actually do and prefer. The middle two themes, TOR reactions and trust/transparency, were consistent across both literature and research, while the first and last themes were driven more by participant habits and opinions.

Themes two and three aligned closely with prior studies. Participants emphasised that TORs should be carefully calibrated to attention and urgency, with gradual escalation and multimodal cues proving most effective. Similarly, system transparency was viewed as essential for maintaining trust without tipping into over-trust or under-trust.

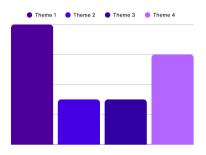
The first-hand research findings add the most value is in themes one and four. Initially, I expected participants to use autonomous mode for highly distracting tasks such as laptop work or sleeping. However, both observations and surveys showed most would engage only in mildly distracting activities such as using their phone, listening to podcasts, or casual conversation. In terms of steering wheel form, most participants preferred traditional forms and were resistant to unconventional concepts like yokes. This contradicts the benchmarking analysis, which showed concept vehicles trending toward minimal or radical designs. Familiarity and clarity may explain these preferences. The positive reception of retro-modern concepts such as Hyundai's N Vision 74 supports the idea that innovation paired with familiarity may be more widely accepted.

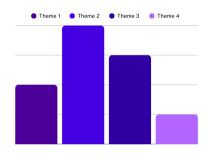
Additional insights emerged from observations, as drivers claimed the steering wheel was not obstructive, when they switched to the passenger seat they brought their knees up essentially where the steering wheel would sit. This suggests that users may underestimate potential ergonomic benefits of more flexible wheel forms due to what they are familiar with, leaving space for innovative but carefully framed solutions.

There are limitations to acknowledge. The survey sample was skewed toward the 18–24 age bracket, limiting generalisability, though this group is most likely to experience semi-autonomous driving as normal in their lifetime. Participants for the observations were also industrial design students, whose openness to innovation may not reflect the wider public. Despite this, triangulation across interviews, observations, and surveys strengthened the findings overall.

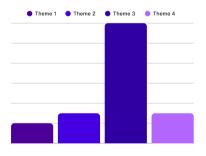
DESIGN IMPLICATIONS

The findings from the research highlight that the steering wheel design must address all four themes identified in this study: driver habits, TOR reactions, trust and transparency, and steering wheel form. Each theme brings its own challenges and opportunities, and while some implications are more heavily weighted toward one theme, most span across multiple. The chart next to each implication shows the severity of each theme.

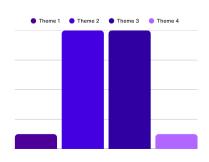



MAINTAIN VISIBILITY OF THE WHEEL WHILE OPTIMISING SPACE

Findings showed that most participants did not want the wheel to fully disappear, as its presence provides reassurance and quick access during a TOR. A wheel that slides back or changes size could give more legroom and comfort without undermining trust. However, following emerging industry trends, a fully retractable wheel into the dash could also be explored as a radical alternative.


PREDICTIVE CUES AND ATTENTION MAINTENANCE

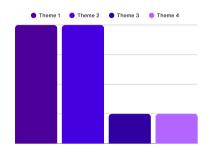
Observations, surveys, and the interview all highlighted the sharp gap between driver disengagement and takeover readiness. To bridge this, the steering wheel should use predictive and progressive cues that build attention before a TOR. Subtle movements, grip lighting, HUD projections, or pulsing patterns could signal upcoming control changes keeping attention levels high.


REINFORCE TRUST WITH TRANSPARENT VEHICLE INTENTIONS

Trust and transparency emerged as critical from both literature and firsthand research. Predictive HUDs, interactive wheel displays, or route projections could show drivers what the vehicle intends to do (lane change, braking, overtaking). This helps prevent under-trust, which is a common pattern in observations and surveys.

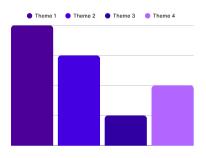
PROVIDE MULTIMODAL, CONTEXT-AWARE TOR COMMUNICATION

Drivers preferred adaptive warnings that adjust to urgency and user state. Combining haptic, visual, and audio cues with AI situational analysis and drivermonitoring cameras could ensure TORs are not overwhelming but still capture attention effectively, while the AI could communicate vehicle intentions.

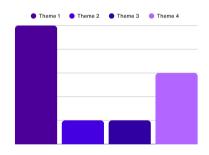

SUPPORT SECONDARY TASKS WHILE KEEPING ROAD IN PERIPHERAL VISION

Most observed habits involved mild distractions such as phone use or conversation. Designing integrated holders for phones or media displays on the wheel with the road in peripheral vision would allow drivers to engage in these tasks without fully disconnecting from the driving environment, or integrating HUD.

Theme 1 Theme 2 Theme 3 Theme 4


ADAPT THE DRIVER'S ENVIRONMENT DYNAMICALLY

Participants often discussed seating comfort. Automatically reclining or swivelling the seat during autonomous mode, then moving it upright during a TOR, could enhance relaxation without compromising readiness. Subtle shifts toward the centre console could also support conversation and reduce neck strain.


FACILITATE QUICK MANAGEMENT OF DISTRACTIONS DURING TOR

Several participants highlighted the difficulty of quickly putting aside items like laptops, food, or phones during takeover. Adding smart storage pockets or a quick "drop zone" in the centre console could give drivers a safe place to stash items when alerted to retake control.

INTEGRATE WORKSTATION FEATURES FOR LONG AUTONOMOUS TRIPS

While most participants engaged in mild tasks, some said they would consider using a laptop or eating food on long drives. An extendable table or side-mounted workstation could accommodate this need safely, especially when paired with predictive TOR alerts to give drivers time to store devices before resuming control.

CONCLUSION

This research report examined the human-machine interaction challenges of Level 3 semi-autonomous driving with a focus on the BMW M8 steering wheel. A triangulated research approach was applied, combining observations, an expert interview and a survey to build a well-rounded understanding of user experience. The study was structured around four key themes: driver habits, takeover request (TOR) reactions, trust and transparency, and steering wheel form.

Findings showed that most users engaged in light tasks such as phone use, music or conversation rather than highly distracting behaviours. This indicates that steering wheel design should support mild activities while keeping drivers prepared to retake control. Insights from the expert interview reinforced the importance of attention management, noting that TORs should not only escalate gradually but also anticipate lapses in driver focus. Participants across methods preferred multimodal cues that provided clarity without inducing sudden stress. Trust in automation was conditional, with users more confident when the vehicle communicated its intentions through predictive signals. Preferences for wheel form remained conservative, with most favouring traditional shapes but open to small ergonomic changes or retractable adjustments for comfort.

These findings highlight the need to address driver habits, TOR design, transparency and wheel form as interconnected factors rather than in isolation. Together, these themes informed the design implications section, which provides a foundation for future development of the semi-autonomous BMW M8 steering wheel.

REFERENCES

- BMW Group. (2023, November 10). BMW introduces Level 3 highly automated driving in the new 7 Series. Retrieved from BMW Group PressClub: https://www.press.bmwgroup.com/global/article/detail/T0438214EN/level-3-highly-automated-driving-available-in-the-new-bmw-7-series-from-next-spring
- BMW Group. (2024, August 2). BMW Group sets new standards in Automated Driving. Retrieved from BMW Group: https://www.bmwgroup.com/en/news/general/2024/automated-driving.html
- Deo, N., & Trivedi, M. M. (2020). Looking at the Driver/Rider in Autonomous Vehicles to Predict Take-Over Readiness. IEEE Transactions on Intelligent Vehicles, 41-52.
- Diels, C., & J. E. (2019). Self-driving carsickness. Applied Ergonomics, 374-382.
- Ford. (2023, April 13). Ford Brings Hands-Free Driving Technology to Motorways in Great Britain. Retrieved from Ford Media Center: https://media.ford.com/content/fordmedia/feu/en/news/2023/04/13/ford-brings-hands-free-driving-technology-to-motorways-in-great-.html
- General Motors. (2025, February 28). Super Cruise 101: All you need to know about GM's hands-free driver assistance system. Retrieved from GM News: https://news.gm.com/home.detail.html/Pages/topic/us/en/2025/feb/0228-supercruise.html
- Honda. (2021, March 4). Honda launches next generation Honda SENSING Elite safety system with Level 3 automated driving features in Japan. Retrieved from Honda News: https://hondanews.com/en-US/honda-corporate/releases/release-e86048ba0d6e80b260e72d443f0e4d47-honda-launches-next-generation-honda-sensing-elite-safety-system-with-level-3-automated-driving-features-in-japan
- Honda. (2024). Honda SENSING Elite. Retrieved from Honda Technology: https://global.honda/en/tech/Automated_drive_safety_and_driver_assistive_technologies_Honda_SENSING_Elite/
- Honda. (2025). Concept Models. Retrieved from Honda 0 Series: https://0.honda/en/models/
- Hyundai. (2025). N Vision 74. Retrieved from Hyundai: https://www.hyundai.com/au/en/why-hyundai/concept-cars/n-vision-74
- Kim, H., Kim, W., Kim, J., Lee, S.-J., Yoon, D., Kwon, O.-C., & Park, C. H. (2023). Study on the Take-over Performance of Level 3 Autonomous Vehicles Based on Subjective Driving Tendency Questionnaires and Machine Learning Methods. ETRI Journal, 75-92.
- Lexus. (2022, February 24). Teammate Advanced Drive Backgrounder. Retrieved from Lexus Newsroom: https://pressroom.lexus.com/teammate-advanced-drive-backgrounder/
- Mercedes-Benz Group. (2020, June 23). Software-Defined Computing Architecture for Automated Driving Across Future Fleet, Mercedes-Benz and NVIDIA. Retrieved from Mercedes-Benz Group: https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/mercedes-benz-and-nvidia-plan-cooperation.html
- Mercedes-Benz Media. (2022, May 6). Conditionally automated driving: Mercedes-Benz announces sales launch of DRIVE PILOT. Retrieved from Mercedes-Benz Media: https://media.mercedes-benz.com/article/37f8acd0-df37-4755-acec-9534308c8e7b
- Mercedes-Benz USA. (2023, September 27). Automated driving revolution: Mercedes-Benz announces U.S. availability of DRIVE PILOT the world's first certified SAE Level 3 system for the U.S. market. Retrieved from Mercedes-Benz Media Newsroom USA: https://media.mbusa.com/releases/automated-driving-revolution-mercedes-benz-announces-us-availability-of-drive-pilot-the-worlds-first-certified-sae-level-3-system-for-the-us-market
- Mobileye. (2020, July 23). Understanding L2+ in Five Questions. Retrieved from Mobileye: https://www.mobileye.com/blog/understanding-I2-in-five-questions/
- Riener, A., Jeon, M., & Alvarez, I. (2022). User Experience Design in the Era of Automated Driving. Cham: Springer Nature Switzerland AG.
- SAE International. (2021, August). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. BSI (British Standards Institution). Retrieved from SAE International: https://bsol-bsigroupcom.eu1.proxy.openathens.net/Bibliographic/BibliographicInfoData/00000000030443080
- Seabaugh, C. (2021, June 29). 2022 Tesla Model S Plaid Steering Yoke Review: The Pros and Cons. Retrieved from Motortrend: https://www.motortrend.com/reviews/2022-tesla-model-s-plaid-steering-yoke-wheel-review
- Tesla. (2025). Autopilot and Full Self-Driving Capability. Retrieved from Tesla: https://www.tesla.com/en_GB/support/autopilot
- World Health Organisation. (2023, December 13). Road traffic injuries. Retrieved from World Health Organisation: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
- Zhou, Y., & Jiang, Y. (2024). Measures affecting driving safety and experience in the era of semi-autonomous driving: Invehicle interaction design toolkit. The Design Journal, 741-760.

APPENDIX

APPENDIX A - WEIGHTED DECISON MATRIX

System / Car	Visual (3)	Auditory (2)	Tactile (3)	HUD (3)	Other/Comfort (1)	Weighted Total (out of 60)
Mercedes EQS (L3)	5×3=15	5×2=10	5×3=15	5×3=15	3×1=3	58
BMW 7 Series (L3)	5×3=15	4×2=8	5×3=15	5×3=15	3×1=3	56
Honda Legend (L3)	4×3=12	4×2=8	2×3=6	3×3=9	2×1=2	37
Tesla Model S Yoke (L2)	4×3=12	3×2=6	2×3=6	2×3=6	2×1=2	32
GM Cadillac Escalade (L2)	4×3=12	4×2=8	4×3=12	4×3=12	2×1=2	46
Ford F-150 (L2)	4×3=12	4×2=8	4×3=12	4×3=12	2×1=2	46
Audi Q6 e-tron (L2)	4×3=12	4×2=8	3×3=9	4×3=12	2×1=2	43
Hyundai Ioniq 6 (L2)	4×3=12	4×2=8	4×3=12	4×3=12	2×1=2	46
Lexus LS (L2)	4×3=12	4×2=8	4×3=12	5×3=15	3×1=3	50
Li Auto L9 (L2+)	5×3=15	4×2=8	4×3=12	5×3=15	3×1=3	53

APPENDIX B - SURVEY QUESTIONS

DEMOGRAPHICS

What is your age group?

How many years of driving experience do you have?

THEME 1: DRIVER ENGAGEMENT / DISENGAGEMENT BEHAVIOURS

When would you use an autonomous driving mode (where the car drives itself and you don't need your hands on the wheel or eyes on the road, but you must still be ready to take over)?

How often would you use this autonomous driving mode?

When using this autonomous mode (hands and eyes off, but ready to take over), what activities would you most likely do? (Select up to 3)

THEME 2: TOR RESPONSE & ALERT PREFERENCES

If the car requests you to take over control (not urgently), which alert method would you prefer?

How would you prefer a takeover request (TOR) to be delivered?

THEME 3: DRIVER TRUST, TRANSPARENCY & SYSTEM COMMINICATION

When the car is about to change lanes, or stop at traffic lights what level of information would you prefer?

How important is it to you to know the vehicle's intended actions (e.g., lane change, slowing, or exiting)?

THEME 4: STEERING WHEEL DESIGN & ERGONOMICS

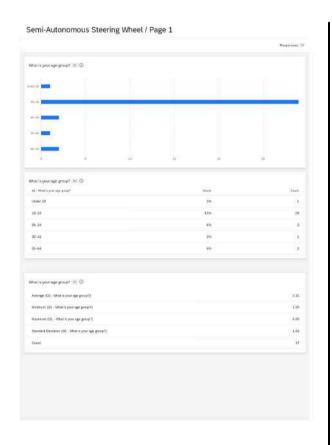
During autonomous mode, how would you prefer the steering wheel to be positioned?

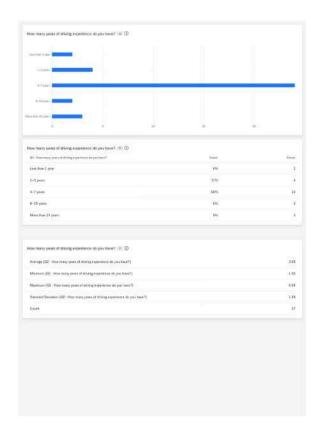
If the steering wheel shape was changed, how willing would you be to accept a non-traditional design (for example, a Tesla-style yoke)?

APPENDIX C - OBSERVATION QUESTION SHEET

Name and Participant Number: Broad / General Experience Environment Checklist 1. What are your overall thoughts on the car driving itself and what did you find yourself doing? Induction If you had a semi-autonomous car and you made this commute daily, what do you think you would do while in autonomous mode? Welcome, thank you for taking part today. This session will run for about 20 minutes in total. Hara's how it will work: One of you will start in the driver's seat and the other in the passenger seat. After 10 minutes, you'll swap seats so that both of you get a turn in the driver's seat. Please feel free to interact naturally — talk to each other and do what you think you would normally do if the car were driving itself. 3. How do you think could the car better accommodate that (activity they are doing)? In the first 5 mins I'll be more observant, and in the last 5 minutes of each turn, I'll begin asking some questions. Think of this almost like an enactment focus group — I want to hear your thoughts. while you're experiencing the scenario. 4. In general, what do you think would make your experience more enjoyable in autonomous mode? You're also welcome to use personal items if you think that's realistic for you, such as your phone, laptop, or a book. GET THEM IN THE CAR AND START RECORDING Now make yourself comfortable, change the seat and wheel, and now imagine you're on a wide, well-marked highway you drive often. Traffic is heavy and moving slowly and you're on your commute from work. It's a clear day, good visibility, and your car has an automation system that can drive completely on autopilot. And you legally don't need to keep your hands on the wheel or eyes on the road during autonomous mode, but you must be ready to take over within 10 seconds if the car alerts you (this is if roadwork is detected and other reasons). Let's get started, I'll just observe you guys from here and at some point, I will ask you to take over the driving. 5. Would you ever consider having a nap if the car was in control? 6. How would you feel when asked to take control when you are completely distracted? Posture & body orientation (are they leaning back, legs up, relaxed, sleeping, do they shift posture when told to take over, are there any things that make them look uncomfortable) 7. What would make the takeover process easier or more comfortable? Hands (where are the hands going, on wheel, phone, down by side, when told to where they put their hands when they get told to take over) 8. What sort of warnings would you ideally want to receive in that situation — lights, sounds, Head & gaze direction (where are they looking, are they looking out the window or mirrors at all, sleeping with head to the side, are they turning to the passenger) 9. Would you find it beneficial if the car gave you a built-up warning or visual countdown before the Engagement (do they fidget, phone, chat, work-like behaviours, how quick are they to focus on the road when told so, is it light distraction or deep engagement) 10. How transparent would you want the system to be? For example, if the car was about to change lanes or slow down, would you want a signal to notify you? 20. Would you prefer alerts to be subtle and less intrusive, or very noticeable even if they feel If this was your BMW M8 or another sports car that had an autonomous mode, how important would it be that the steering wheel still felt sporty and typical, rather than an unconventional Steering Wheel Design / Physical Comfort 11. How did you feel about the positioning of the wheel in autonomous mode? 12. Would you find it beneficial if the steering wheel could tuck away when not in use? 22. And when do you think you would use this autonomous mode? 13. Do you feel legroom is an issue when the car is driving itself? Post Experience Summary 14. Would you feel comfortable if the wheel had a different shape (e.g., rectangular) to give you more 15. Would you prefer the steering wheel to move/turn with the car in autonomous mode, or stay still? 16. Would you speak to the passenger most of the time if there was one? 17. If you were alone, what do you think you would do differently? 18. Would you feel safe letting the car drive itself, or will you still be alert? 19. Is there anything that would make you trust the car more in autonomous mode, or have better

APPENDIX D - INTERVIEW QUESTION SHEET

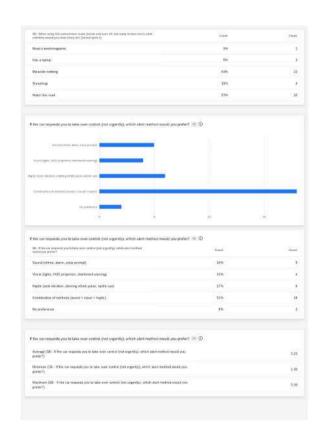

Yueteng Yu Question Sheet

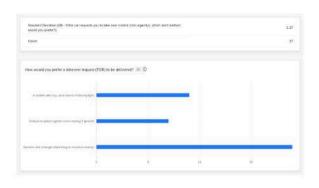

Yueteng is currently a PhD candidate at CARRS-Q, QUT. His research is devoted to advancing the Human-Machine Interface (HMI) in automated vehicles. Specifically, it seeks to generate new knowledge about designing multimodal HMIs to optimise safety and user experience effectively. He has practical experience in evaluating automotive interfaces in driving simulators, test-track and has conducted studies on drivers and passengers in real-road urban scenarios. He also has experience organising human-centred, multimodal data collection studies with an autonomous vehicle.

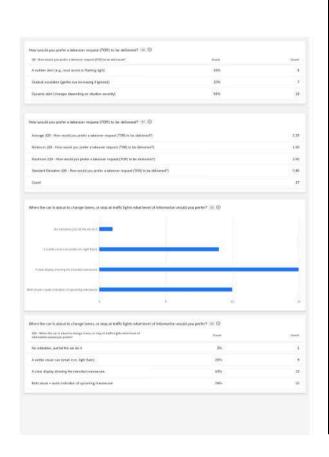
Qı


		ons
u		Can you give me a quick rundown of your PhD research and some of the key findings so far?
		In the real-road studies you have conducted, what are some interesting things you discovered abour human behaviour in AVs?
	3.	From your research, what do you think are the key strengths and weaknesses of multimodal HMIs (visual, audio, haptic) in automated vehicles?
	4.	Based on your studies, what makes a takeover request most effective — in terms of timing, modality, or the way cues are combined?
	5.	Have you noticed differences in how drivers respond to HMI cues in simulators compared to test-tracks or real-road scenarios?
	6.	From your experience, what are the most effective ways to balance safety-critical information with maintaining a positive user experience?
		What emerging HMI technologies (e.g., AR overlays, adaptive haptics, AI-driven personalisation) do you think have the most potential for AVs?
	8.	What are your key considerations I should have when designing a steering wheel for a semi-autonomous vehicle?

APPENDIX E - SURVEY RAW DATA

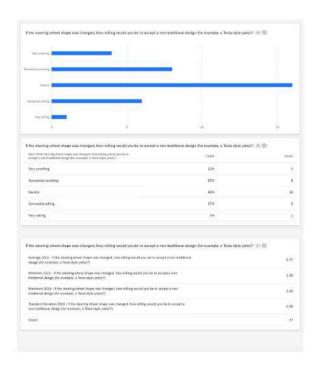






APPENDIX E - SURVEY RAW DATA





APPENDIX E - SURVEY RAW DATA

Observation 1
Yean, grab your laptop, I just go okay, tell me about a jaggle. Yeah, Yeah, yeah, definitely. The's long, Jag, Oh, it's just 40 years Holy, This is so low. So a little comfortable, the seat in the steering wheel you wish. Oh, well, everything will be automatic, okay's's this thing looking? Hey? What's this thing? Oh, it's like a set. So, like, it sets your seat in a position. Oh, does it? Oh. Oh, what the hell? There you go. Right. Let's imagine, traffic is heavy and moving slow slowly. You're on your commute from work. It's a clear day, good visibility, and your car has an automation system that can drive completely on automomous mode. But you must be ready to take over within 10 seconds it the car alerts. This is if roadworks is detected or anything like that. All inght, let's get started. Harry, you're driving, Let's go. What are you doing if you're driving in formally, and then I'llig liev you a warning if you're got automomous mode. You, Harry Ew. Walt, so, when does the... when do I have to flick it into normal mode? No, just pretend you just driving it normally, and then I'llig liev you a warning if you're got like switch it back... So do you reckon you'd be comfortable using your computer with your daughter? That's what I.l. i guess it depends, like, how much work I need to get done. Yeah. Like, say if I'm, like, oh, I got deadline, I'm, like, I'm feeling a little risky. Yeah. But if, like, I don't need to, I won't. Yeah. Or, if I had just got, like, an idea, like, I got a research, yeah. Probably more likely my phone, though. A flashiro's. I wonder if it's all real leather. All right, there's a little tan accent. Yeah, it's very good. Is like, oh, the backseat will be cramped. Yeah. But if likes, a stutilly really cook yeah. Well, you had the if you had an autonous car. Yeah, what do you reckon you would do like, if you had an autonous car. Yeah, what do you reckon you would do like, if you had an autonous car. Yeah, what do you reckon you would do like, if you had an autonous car. Yeah,

Income to design how we talk about signifiers, like, something that signifies now to use it. Teath, so, mer, if that, the grown to consort more and out if this is at the top. Yeah. A little squish, The leg is it.

Observation 2

Observation 2

Oh noto, there's Yeah, see how it is the 1? Oh, blood ? Yeah. No, this is probably good. Yeah. Yeah, yeah. I. You're a flex here your f.What am I driving in? Is a PMW. Yeah. On the way to Dubal. Have you seen all the Asian drivere? Yeah, they're the worst. The amount of views is ton of concerning. Like, to me, it is so small. The wind, yeah.; So pretend you're driving right now. Yeah. Look forward it on the road, how would you sit. Libration in the acceler Yeah. Neah. Yeah. And then boom, you're in heavy traffic and you but on the wind, yeah.; So pretend you're driving right now. Yeah. All you have the read on the you're in heavy traffic and you but to the word, you're in heavy traffic and you but on the wind you have the you be not make any to the pretent of the your maximum of the you know what? There is enough leg room. Would you sit that would probably down and not being receip it. In this will be like cruise control where you lot know here? Yeah. Have you put it up somewhere? Yeah. I would, if there was a choice, I would leave it here. Have it on the steering wheelt/Cause, oh, or something like for my hand to rest on, you know what! There is enough leg room. Would you were work your laptop out? On, if it's like an hour and a haif drive, maybe. If it's leg 20 minutes it will get tirred when you locking down and not being receip it. In harp? No, no. You think so. No. I don't hap in cars unless if m that extremely tirred or, unless someone that I trust is driving me. Yeah, seh. So I don't think I would to probably be my mass distraction. Watching Netthins so. I don't hap in cars unless if m that surface the your maximum distraction? Max distraction? Would you ever work your laptop out? On, if it's like an hour and a haif drive, maybe. If it's 20 like 20 minutes a like b

Well, like, it would be like harry said, like, what's good about convenional driving whe is like you can hold it in a fix of afferent positions. They say, if it's like a more race car shape, you can 'only hold it that way, You know what it mean? Yo en appe. See? That as a way. Easy, baddy a face card or what? Yesh, with that you have have you are controlled to the position of the

Observation 4
Yeah, I know, It's a bit of a. It'd be cool if it was like an option, like you could stock change a wheel. Yeah. option. Yeah, exactly. So if you want to, you can take it on track. Yeah. Awesome sorts. There we go, Yeah. Yeah, it's pretty close. I think, wheel. Yeah, how do you move the sea? Is it time from hobs on the side. Yeah. So that ione. Oh, yeahep, actually. Yeah, okay. That's goodge. Yeah. You' better have a like that. Yeah. So it's like bang you're driving along. And you're in traffic. Imay as well put it in theous mode. And then bang is switching to itsous mode. Yeah. What do you reckon you're doing? I'd still be like this, honestly. Like, I still would, yeah, definitely. Because, I don't know. There's only so much I can trust and, you know, sometimes something really crazy can happen on the road. I feel like I've just got to be ready for that: situation at all times. Yeah. I'd be similar to like cruise control. If I have cruise control to and I'm still like this at all times, it's just like keeping an eye out, but just giving my feet a rest, really is all it is, your like your feet up on the Yeah, I'd kind of just like, put it down, kind of like how it is now. Yeah. Yeah. Or I'd kind of like have eye out, but just giving my feet a rest, really is all it is, your like your feet up on the Yeah, I'd kind of just like, put it down, kind of like take about if the wheel say it was like changing lanes or something for you? Yeah. Would you have your hands on the wheel and the wheel like turns with the car? Yeah, I'm trying to envision how that would be like. I might. Yeah, was like the one of those too. I'd maybe change it up. Maybe if j got more comfortable, I'd kind of like take my hands off. But yeah, I'd still have them like nearby. Yeah, let's your un called James and then. Are you chatting or what do you reckon you want it to be I'll was changing lanes speeding up slowing down? J pretty much want by be saying hey, his is what's going on so that I kind of know it at all limes. And then if

in dead like, for the Collection of the Collecti

Chapter (Cont.) The control of the c

The Awesome. No worries at all, man. Happy to help. That's a cool project. Have you got some good feedback from us? Oh, couple of. It's in Syria. seems to kind of, I don't know, I' know whether I hat or observed that the abeliance of the syria of the s

Observation 8
Mn hmm. Okay, You 10. Yeah. So just get into a position that you're driving, Yeah, Yeah. How'd you position your hair? Is it so? I like one arm on the console, one on the door, probably, and then, like, up more active driving. So when you're driving, let's say you have autom mode when you're on three, have your position yourself. Probably like that, or like one hand on the wheel, And so let's say you have autom mode when you're on three, have your position yourself. Probably like that, or like some one hand on the wheel. And so let's say you have autom mode whou're on three, have your position yourself. Probably like that, or like one hand on the wheel. And so let's say you have autom mode whou're on three, have your position yourself. Probably like that, or like one hand on the wheel. And so let's say you have autom mode whou're on three, have you rey chool you're on the you're had you you proben you up have you when, And what sort of this go you reckon you do'? Would you go up to you had a long commit to work. Yeah. You're accommitate you recken you'd still just be watching? Yeah. Yeah. All right, sweet. I'm like a terribe passenger. Yeah. Wah, Yeah. All right, sweet. I'm like a terribe passenger yeah. Yeah. Yeah. All right, sweet. I'm like a terribe passenger. Yeah. Um, so' like, yeah yeah. No, I'm kind of like, hey, I don't know. I just. Yeah. Wah, Yeah. Yeah. Yeah. Yeah. All right, yeak. Yeah. Yeah

control control control of the standard of the

Observation 10
On, yeah, Indoorn like during school. But I just don't want to have to pay attention to the exhool, man. Yeah. Oh my God, this is so far back. Yeah. Inght? And you can't move because it's electric. Whose the patherny of the pathern of the pathern of the patherny of the pathern of the patherny of the pathern of the patherny of the pathern of the p

APPENDIX G - INTERVIEW TRANSCRIPT

APPENDIX G - INTERVIEW TRANSCRIPT

The second of the secon